ANALISA PREDIKSI INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE ARIMA
Abstract
Investment in the capital market every manager needs to analyze to make decisions so that the right target to produce profits in accordance with what is expected. For that, we need a way to predict the decisions that will be taken in the future. The research objective is to find the best model and forecasting of the composite stock price index (CSPI).
Data analysis technique The ARIMA Model time series data from historical data is the basis for forecasting. Secondary data is the closing price of the JCI on July 16 2018 to July 16 2019 to see how accurate the forecasting is done on the actual data at that time.
The results of the study that the best Arima model is Arima 2.1.2 with an R-squared value of 0.014500, Schwarz criterion 10.83497 and Akaike info criterion of 10.77973. Results of forecasting actual data are 6394,609, dynamic forecast 6387,551 selisish -7,05799, statistics forecas 6400,653 difference of 6,043909. For investors or the public can use the ARIMA method to be able to predict or predict the capital market that will occur in the next period.
References
Antoniol, G., M. Di Penta, and M. Neteler. 2003. “Moving to Smaller Libraries via Clustering and Genetic Algorithms.” In Proceedings of the European Conference on Software Maintenance and Reengineering, CSMR,.
Arsyad, Lincolin. 1995. “Peramalan Bisnis.” In Jakarta: Ghalia Indonesia.
Assauri, Sofyan. 1984. “Teknik Dan Metode Peramalan. Penerapannya Dalam Ekonomi Dan Dunia Usaha Edisi Satu.” Lembaga Penerbit FE UI, Jakarta.
Dunis, Christian L., and J. Alexandros Triantafyllidis. 2002. “Alternative Forecasting Techniques for Predicting Company Insolvencies: The UK Example (1980-2001).” Neural Network World 13(4): 326–60.
Eduardus Tandelilin. 2001. “Analisis Investasi Dan Manajemen Portofolio.”
Fama. 1965. “The Behavior of Stock-Market Prices.” 38(1): 34–105.
Francis, R C, and S R Hare. 1994. “Francis 1994.Pdf.” Fisheries Oceanography.
Grestandhi, Jordan, Bambang Susanto, and Tundjung Mahatma. 2011. “Analisis Perbandingan Metode Peramalan Indeks Harga Saham Gabungan ( IHSG ) Dengan Metode Ols-Arch Garch Dan Arima.” Prosiding (T-14).
Halim, Siana. 2006. “Diktat - Time Series Analysis Prakata.” (January).
Husnan, Suad. 1998. “Dasar-Dasar Teori Portofolio Dan Analisis Sekuritas.” In Yogyakarta.
Iriawan, N dan P.S. Astuti. 2006. “Mengolah Data Statistik Dengan Mudah Menggunakan Minitab 14.” In Yogyakarta: Andi.
Iwan, Vincentius, and Nur Iriawan. 2015. “Pemodelan Box-Jenkins (Arima) Untuk Peramalan Indeks Harga Saham Gabungan.” : 1–11.
Lawrence, Ramon. 1997. “Using Neural Networks to Forecast Stock Market Prices.” : 1–21.
Malkiel, Burton G. 2003. “Critics.” 17(1): 59–82.
Mulyono, Sri. 2000. “Peramalan Harga Saham Dan Nilai Tukar : Teknik Box-Jenkins.” Ekonomi dan Keuangan Indonesia: 125–41.
Nachrowi, Djalal, and Hardius Usman. 2004. “Pendekatan Populer Dan Praktis Ekonometrika Untuk Analisis Ekonomi Dan Keuangan.” The Journal of Finance.
Rode, David, Satu Parikh, Yolanda Friedman, and Jeremiah Kane. 1995. “An Evolutionary Approach to Technical Trading and Capital Market.” The Warthon School University of Pennsylvania.
Sadeq, Ahmad. 2008. “Analsis Prediksi Indeks Harga Saham Gabungan Dengan Metode ARIMA ( Studi Pada IHSG Di Bursa Efek Jakarta ).” Universitas Stuttgart.
Sartono, B. 2006. Modul Kuliah Pelatihan Time Series Analysis. Bogor: IPB.
Tauryawati, Mey Lista, and M Isa Irawan. 2014. “Perbandingan Metode Fuzzy Time Series Cheng Dan Metode Box-Jenkins Untuk Memprediksi IHSG.” Jurnal Sains dan Seni ITS 3(2): A34–39. http://ejurnal.its.ac.id/index.php/sains_seni/article/view/7985.
Yani, Achmad. 2014. “Analisis Teknikal Harga Saham Dengan Metode ARIMA.” : 66.
———. 2018. “Analisis Teknikal Harga Saham Dengan Metode Arima Achmad Yani Sekolah Tinggi Ilmu Ekonomi Totalwin Semarang.” 9(November).
Zulkarnain, Iskandar. 2010. “Akurasi Peramalan Harga Saham Dengan Model Arima Dan Kombinasi Main Chart + Ichimoku Chart.” Management Insight 7(1): 59–70.
PDF Views : 3774 times